New type of flow battery can store 10 times the energy of

first_imgIndustrial-scale batteries, known as flow batteries, could one day usher in widespread use of renewable energy—but only if the devices can store large amounts of energy cheaply and feed it to the grid when the sun isn’t shining and the winds are calm. That’s something conventional flow batteries can’t do. Now, researchers report that they’ve created a novel type of flow battery that uses lithium ion technology—the sort used to power laptops—to store about 10 times as much energy as the most common flow batteries on the market. With a few improvements, the new batteries could make a major impact on the way we store and deliver energy.Flow batteries aren’t much different from the rechargeables we’re all used to, aside from their massive size. In conventional rechargeables, electrical charges are stored in an electrode called an anode. When discharged, electrons are pulled off the anode, fed through an external circuit where they do work, and returned to a second electrode called a cathode. Liquid electrolytes between the electrodes ferry ions through the battery to balance the charges. The batteries can be recharged by plugging them in, which forces the charges—and the ions—to flow in reverse.But in flow batteries, the charges are stored in liquid electrolytes that sit in external tanks. The charge-carrying electrolytes are then pumped through an electrode assembly, known as a stack, containing two electrodes separated by an ion-conducting membrane. This setup allows large volumes of the electrolytes to be stored in the tanks. Because those tanks have no size limit, the storage capacity of a flow battery can be scaled up as needed. That makes them ideal for storing large amounts of power for the grid. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Sign up for our daily newsletter Get more great content like this delivered right to you! Country Emailcenter_img Click to view the privacy policy. Required fields are indicated by an asterisk (*) Today, the most advanced flow batteries are known as vanadium redox batteries (VRBs), which store charges in electrolytes that contain vanadium ions dissolved in a water-based solution. Vanadium’s advantage is that its ions are stable and can be cycled through the battery over and over without undergoing unwanted side reactions. But vanadium is costly, and VRBs have a relatively low energy density. This means that the external tanks must be quite large to hold enough power to be useful.Lithium ion batteries have a far higher energy density than VRBs. But it’s been difficult to incorporate their technology into flow batteries. For starters, the membrane that separates the two electrodes in a flow battery must allow for the quick passage of lithium ions to balance the charges during charging and discharging. Current lithium conducting membranes are either effective but brittle, or flexible but inefficient.To address this problem, researchers led by Qing Wang, a materials scientist at the National University of Singapore, came up with a bit of a hybrid solution. They kept the overall flow battery architecture, with charge-storing tanks separated by a central electrode stack. But inside the external tanks they placed solid—as opposed to liquid—lithium storage materials, one containing a common lithium ion battery cathode material called lithium iron phosphate (LiFePo4), the other containing titanium dioxide (TiO2), which is sometimes used as a lithium ion battery anode. They then used charge-carrying liquids, called redox mediators, to ferry electrical charges from the solids to the stack and back again. The solid storage materials are porous enough to allow the liquid redox mediators to bubble through and grab both electrons and lithium ions and ferry them to the membrane.The researchers also modified the conventional flexible membrane material, called Nafion, combining it with another polymer that better allowed lithium ions to pass through. The approach worked. As they report today in Science Advances, the novel lithium-based flow cells are able to store 10 times more energy by volume in the tanks compared with VRBs.It’s “very innovative” work, says Michael Aziz, a flow battery expert at Harvard University. But he adds that even though the novel battery has a high energy density, the rate at which it delivers that power is 10,000 times slower than conventional flow batteries, far too slow for most applications. Wang and his colleagues acknowledge the limitation, but they say they should be able to improve the delivery rate with further improvements to the membrane and the charge-ferrying redox mediators. If they can, the new lithium flow batteries could give a much-needed jolt torenewable power storage.last_img read more